for (int i = 0; i < list.Count(); i++) { int temp; for (int j=i+1; j<list.Count();j++ ) { if (list[j] < list[i]) { temp = list[j]; list[j] = list[i]; list[i] = temp; } } } }
/***** 2.快速排序由C. A. R. Hoare在1962年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的 所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。算法核心的思想是分 治处理,在数组切分的过程中进行递归,各子部分完成排序后,数组即完成排序。其复杂度可以达到O(N*LogN)。 *****/ public class SortHelper {
public static int Division(List<int> list, int left, int right) { //首先挑选一个基准元素 int baseNum = list[left]; while (left < right) { //从数组的右端开始向前找,一直找到比base小的数字为止(包括base同等数) while (left < right && list[right] >= baseNum) right = right - 1; //最终找到了比baseNum小的元素,要做的事情就是此元素放到base的位置 list[left] = list[right]; //从数组的左端开始向后找,一直找到比base大的数字为止(包括base同等数) while (left < right && list[left] <= baseNum) left = left + 1; //最终找到了比baseNum大的元素,要做的事情就是将此元素放到最后的位置 list[right] = list[left]; } //最后就是把baseNum放到该left的位置 list[left] = baseNum; //最终,我们发现left位置的左侧数值部分比left小,left位置右侧数值比left大 //至此,我们完成了第一篇排序 return left; }
public static void QuickSort(List<int> list, int left, int right) { //左下标一定小于右下标,否则就超越了 if (left < right) { //对数组进行分割,取出下次分割的基准标号 int i = Division(list, left, right);
//对“基准标号“左侧的一组数值进行递归的切割,以至于将这些数值完整的排序 QuickSort(list, left, i - 1);
//对“基准标号“右侧的一组数值进行递归的切割,以至于将这些数值完整的排序 QuickSort(list, i + 1, right); } } } /***** 3.大名鼎鼎的归并排序。由冯诺依曼发明,其核心的思想和快排是一样的,都是分治的原则。 将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 归并排序在算法的空间复杂度上较高,时间复杂度上为O(N*LogN)。 *****/ public class SortHelper { //主方法 public static void MergeSortFunction(int[] array, int first, int last) { if (first < last) //子表的长度大于1,则进入下面的递归处理 { int mid = (first + last) / 2; //子表划分的位置 MergeSortFunction(array, first, mid); //对划分出来的左侧子表进行递归划分 MergeSortFunction(array, mid + 1, last); //对划分出来的右侧子表进行递归划分 MergeSortCore(array, first, mid, last); //对左右子表进行有序的整合(归并排序的核心部分) } //return array; }
//归并排序的核心部分:将两个有序的左右子表(以mid区分),合并成一个有序的表 private static void MergeSortCore(int[] array, int first, int mid, int last) { int indexA = first; //左侧子表的起始位置 int indexB = mid + 1; //右侧子表的起始位置 int[] temp = new int[last + 1]; //声明数组(暂存左右子表的所有有序数列):长度等于左右子表的长度之和。 int tempIndex = 0; while (indexA <= mid && indexB <= last) //进行左右子表的遍历,如果其中有一个子表遍历完,则跳出循环 { if (array[indexA] <= array[indexB]) //此时左子表的数 <= 右子表的数 { temp[tempIndex++] = array[indexA++]; //将左子表的数放入暂存数组中,遍历左子表下标++ } else//此时左子表的数 > 右子表的数 { temp[tempIndex++] = array[indexB++]; //将右子表的数放入暂存数组中,遍历右子表下标++ } } //有一侧子表遍历完后,跳出循环,将另外一侧子表剩下的数一次放入暂存数组中(有序) while (indexA <= mid) { temp[tempIndex++] = array[indexA++]; } while (indexB <= last) { temp[tempIndex++] = array[indexB++]; }
//将暂存数组中有序的数列写入目标数组的制定位置,使进行归并的数组段有序 tempIndex = 0; for (int i = first; i <= last; i++) { array[i] = temp[tempIndex++]; } } }
//3.归并排序 public class SortHelper { public static int[] sort(int[] nums, int low, int high) { int mid = (low + high) / 2; if (low < high) { // 左边 sort(nums, low, mid); // 右边 sort(nums, mid + 1, high); // 左右归并 merge(nums, low, mid, high); } return nums; }
public static void merge(int[] nums, int low, int mid, int high) { int[] temp = new int[high - low + 1]; int i = low;// 左指针 int j = mid + 1;// 右指针 int k = 0;
// 把较小的数先移到新数组中 while (i <= mid && j <= high) { if (nums[i] < nums[j]) { temp[k++] = nums[i++]; } else { temp[k++] = nums[j++]; } }
// 把左边剩余的数移入数组 while (i <= mid) { temp[k++] = nums[i++]; }
#冒泡 defbubble_sort(lists): # 冒泡排序 count = len(lists) for i inrange(0, count): for j inrange(i + 1, count): if lists[i] > lists[j]: lists[i], lists[j] = lists[j], lists[i] return lists
#快排 defquick_sort(lists, left, right): # 快速排序 if left >= right: return lists key = lists[left] low = left high = right while left < right: while left < right and lists[right] >= key: right -= 1 lists[left] = lists[right] while left < right and lists[left] <= key: left += 1 lists[right] = lists[left] lists[right] = key quick_sort(lists, low, left - 1) quick_sort(lists, left + 1, high) return lists
#归并 defmerge(left, right): i, j = 0, 0 result = [] while i < len(left) and j < len(right): if left[i] <= right[j]: result.append(left[i]) i += 1 else: result.append(right[j]) j += 1 result += left[i:] result += right[j:] return result
defmerge_sort(lists): iflen(lists) <= 1: return lists num = len(lists) / 2 left = merge_sort(lists[:num]) right = merge_sort(lists[num:]) return merge(left, right)